UCSF Shares $25-Million Grant To Find Epilepsy Genes

Note: Dan Lowenstein, MD, is a CTSI board member and director of the Institute's Strategic Opportunities Support (SOS) program.

By Jason Bardi

To probe the genetic secrets of one of the most common neurological diseases, more than 4,000 people with various forms of epilepsy will have their DNA decoded over the next five years in a study led by researchers at the University of California, San Francisco (UCSF) and several collaborating institutions.

“This is the largest, most sophisticated project that has ever been attempted for identifying the genetic causes of epilepsy, and it has come about as the result of a great spirit of collaboration among scientists, clinicians, patients and their family members from throughout the world,” said Daniel Lowenstein, MD, vice chair of the Department of Neurology and director of the UCSF Epilepsy Center.

Sorting the patients’ DNA sequences and comparing them to their histories, brain scans and other clinical data will help frame understanding of a disease that strikes tens of millions worldwide, including about 2 million people in the United States. The work may also reveal new ways to treat people with epilepsy.

UCSF has been one of the world’s leading institutions involved in epilepsy research for years and has one of the few medical centers in the world with top-ranking departments in the areas most relevant to this research: biomedical imaging, neurology and neurosurgery.

The new project, funded by a $25-million grant from the National Institute of Neurological Disorders and Stroke, follows on the heels of another study known as the Epilepsy Phenome/Genome Project and led by Lowenstein and colleagues worldwide, which is collecting detailed clinical data and DNA samples from 3,750 people with epilepsy and 1,500 of their relatives without the disease.

In addition to sequencing DNA from a larger number of people, the new project will apply cutting-edge methods for identifying disease-causing variations in the genome known as copy number variants (CNVs), and it will look for genetic clues that might explain why an apparently similar form of epilepsy can be responsive to treatment in one patient and not so in another.

Read more