LaunchPad, a project of UCSF's Clinical and Translational Science Institute, is designed to highlight the experiences and accomplishments of UCSF’s translational researchers, and to support them in their efforts to develop beneficial medical products.
An estimated 200,000 patients a year have acute respiratory failure in the U.S. and mortality is about 30 to 40 percent, according to Michael Matthay, MD, a critical care specialist and professor of medicine and anesthesia at UC San Francisco.
Matthay is working with Jae-Woo Lee, MD, Kathleen Liu, MD, MAS, PhD, and Carolyn Calfee, MD, MAS, associate professors of medicine and anesthesia, on developing cell-based therapies that he hopes “will make a major difference in reducing mortality in patients with acute respiratory distress syndrome, a major cause of acute respiratory failure in critically-ill patients.”
The research team’s experience translating these therapies from scientific concept to clinical practice is featured in a series of videos on LaunchPad, a new online resource for translational researchers that is managed by UCSF’s Clinical and Translational Science Institute (CTSI).
Moving a novel treatment into clinical trials requires an "Investigational New Drug" (IND) approval from the U.S. Food and Drug Administration (FDA). As Liu describes in the video, “Preparing the entire IND application for this project was going to be an enormous undertaking that I think we hadn’t really appreciated.”
Up until the IND process, the team of investigators had worked over many years on pre-clinical studies supporting proof-of-concept for a therapy using a type of stem cells, known as mesenchymal stem cells (MSCs), that could potentially treat injury to a variety of epithelial organs, including the lung and kidney.
Bone marrow-derived MSCs release proteins and lipids with potent anti-inflammatory effects as well as other growth factors that seem to enhance lung repair. Favorable pre-clinical data using these cells to treat injured lung tissue in vitro and in small and large animal models encouraged them to move into clinical trials. The struggle to implement this potentially life-saving therapy began with a search for clinical-grade MSCs. Liu credits “serendipity” and “six degrees of separation” for leading them to a collaborator at the University of Minnesota who creates the cells used in the team’s cell-based therapy.
The experience “speaks to how much of science is making connections with people who don’t do exactly what you do,” Liu says.
Read full story at UCSF.edu
See UCSF.edu news package on LaunchPad here
Related stories on LaunchPad
Researchers Develop Novel Methods to Observe Disease Processes
Team Develops Targeted Therapies for Pain and Inflammation
New Drug-Delivery System to Help Patients with Chronic Eye Diseases
Q&A with Ruben Rathasingham, PhD, LaunchPad team lead